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Abstract

An entirely new sensor approach for attitude determination using Global Positioning System (GPS)

signals is developed. The concept involves the use of multiple GPS antenna elements arrayed on a

single sensor head to provide maximum GPS space vehicle availability. A number of sensor element

configurations are discussed. In addition to the navigation function, the array is used to find which GPS

space vehicles are within the field-of-view of each antenna element. Attitude determination is

performed by considering the sightline vectors of the found GPS space vehicles together with the fixed

boresight vectors of the individual antenna elements. This approach has clear advantages over the

standard differential cartier-phase approach. First, errors induced by multipath effects can be

significantly reduced or eliminated altogether. Also, integer ambiguity resolution is not required, nor do

line biases need to be determined through costly and cumbersome self-surveys. Furthermore, the new

sensor does not require individual antennas to be physically separated to form interferometric baselines

to determine attitude. Finally, development potential of the new sensor is limited only by antenna and

receiver technology development unlike the physical limitations of the current interferometric attitude

determination scheme. Simulation results indicate that accuracies of about 1 degree (3or) are possible.
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Introduction

The Global Positioning System (GPS) constellation was originally developed to permit a wide

variety of user vehicles an accurate means of determining position for autonomous navigation. The

constellation includes 24 space vehicles (SVs) in semi-synchronous (12 hour) orbits, providing a

minimum of six SVs in view for ground-based navigation. The underlying principle involves geometric

triangulation with the GPS SVs as known reference points to determine the user's position to a high

degree of accuracy. The GPS was originally intended for ground-based and aviation applications,

gaining much attention in the commercial community (e.g., automobile navigation, aircraft landing,

etc.). However, in recent years there has been a growing interest in space-based applications. Since the

GPS SVs are in approximately 20,000 km circular orbits, the position of any potential user below the

constellation may be easily determined. A minimum of four SVs are required so that in addition to the

three-dimensional position of the user, the time of the solution can be determined and in turn employed

to correct the user's clock. Since its original inception, there have been many innovative improvements

to the accuracy of the GPS determined position. These include using local area as well as wide area

differential GPS, carrier-phase differential GPS, and so-called "pseudolites" (ground-based GPS

transmitters) [1]. In particular, carrier-phase differential GPS measures the phase of the GPS carrier

relative to the phase at a reference site, which dramatically improves the position accuracy [2]. Also, for

spacecraft applications dynamically aided GPS using orbit models with GPS measurements in an

extended Kalman filter can improve position accuracy.

Early applications of this concept to user spacecraft in Low Earth Orbits (LEOs) have demonstrated

extremely useful results [3]. Recently, there have been investigations of position determination by user

spacecraft from above the GPS constellation [4]. Since current GPS SVs transmit their signals towards

the Earth, this concept poses a much more difficult problem because the user spacecraft must rely on

"spillage" signals received from GPS SVs on the far side of the Earth.

Another aspect of space-based applications using GPS that has gained much recent attention is

attitude determination. One of the first space-based applications was flown on the RADCAL (RADar

CALibration) spacecraft [5], which demonstrated a GPS attitude determination capability using post-

processed measurements. To obtain maximum GPS visibility, and to reduce signal interference due to

multipath reflection, GPS patch antennas were placed on the top surface of the spacecraft bus. Although

the antenna baselines were relatively short for attitude determination (0.67 meter separation), attitude
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accuracyon the order of 2 degreesperaxis (30) was achieved. Another experiment,Crista-SPAS[6]

providedthe first on-orbit demonstrationof real-time attitudedetermination. The spacecraftcontained

an accurategyro reference,but the coordinateframe alignmentwas not measuredrelative to the GPS

attitude reference frame, which means that discrepanciesbetweenthe two referenceframes might

accountfor slightly different measurementsfrom the two systems.Over the courseof the experiment,

the two sets of attitude solutions agreedto within 2 degrees,which was thought to be within the

alignment toleranceof the two referenceframes. The first extendedreal-time GPS basedattitude

determinationmissionwas flown on the REX-II spacecraft[7], which testedactualattitudecontrol using

GPSattitudemeasurements.

The differential carrier-phasemeasurementerror hasa standarddeviation of about 10 degrees, a

small fi'action of the standard wavelength [8]. However, many error sources can significantly contribute

to attitude inaccuracy. These include: reflections of the GPS carrier from the environment surrounding

the antennas (multipath), electrical dissipation inherent when passing carrier-phase signals over the

lengths of the RF cables between antennas and receiver (line bias errors), antenna motions due to

external disturbances (e.g., thermal distortion effects), constellation availability, tropospheric refraction,

and cross-talk errors. The most significant error source and the most difficult to overcome is multipath

[9]. In fact, multipath effects can be so pronounced as to be a major driver for the location of the GPS

antennas on a vehicle. Despite limited successes with recent attempts at modeling multipath [10], this

error remains a limiting factor in the performance of carrier-phase based GPS attitude determination.

This is due to the complex physical nature of the reflecting surfaces, which depends mostly on antenna

locations. Line biases can also adversely affect carrier-phase based attitude. These biases are typically

determined by performing extensive calibrations (self survey) of the flight system on the ground prior to

launch. However, since the space environment can significantly alter the physical properties of the cable

through large temperature gradients, a permanent solution to this problem remains elusive. Yet another

error source for the carrier-phase based method involves shifting baselines. In general, the attainable

attitude accuracy improves with longer baselines. If, however, satisfactorily separating the GPS

antennas requires mounting them on flexible structures (such as solar arrays, or deployable booms), then

the attitude performance of the carrier-phase based method can be seriously compromised to the point

where the advantages of the longer baseline is compromised. It is important to recognize that the
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aforementionederrorsareprimarily aresult of the physical problems associated with using carrier-phase

based measurements for attitude determination.

Before the actual GPS attitude determination can be performed, the correct number of integer

wavelengths between each pair of antennas must be found. The resolution of these integer ambiguities

has been extensively investigated [11]. Such integer resolution techniques fall into two general

categories: instantaneous and motion-based techniques. Instantaneous techniques provide immediate

integer resolution without vehicle motion; however, the uniqueness of the solution may be severely

degraded with sensor noise. Motion-based techniques use a batch of data to determine the integers;

however, they rely on sufficient vehicle motion to obtain system observability. In either case, it is

essential that these integers are accurately resolved before attitude determination can occur.

In this paper, a new sensor approach for GPS attitude determination is shown. This essentially

involves using an array of GPS antenna positioned to provide maximum sky coverage. This array is

used only to find which GPS spacecraft are within the field-of-view (FOV) of each antenna. Attitude

determination is performed by considering the sightline vectors of the found GPS spacecraft together

with the boresight vector of the particular antenna, unlike interferometric methods (see Refs. [12]-[14]).

The boresight is used since the exact location of the GPS spacecraft in the body-flame of the antenna

FOV is not known. The approach essentially is similar to a star tracker, with the GPS sightline vectors

as the inertial reference vectors and the antenna boresight vectors as the body vectors. Multiple antennas

are used to increase attitude accuracy. The advantages of the new sensor approach include: 1)

differential carrier-phase measurements are not required, 2) attitude errors from multipath can be

reduced or even eliminated, 3) integer ambiguities do not need to be resolved, and 4) line biases do not

need to be determined. Therefore, the new sensor approach is easy to implement and use for any

application. It will be shown that the accuracy of the new sensor is better as the FOV decreases.

Multiple sensor configurations are tested to investigate this concept. Even though the accuracy in

simulations is currently not better than the standard carrier-phase approach, the new sensor is only

limited by technology. As technology advances, more GPS antenna can be used to further increase

attitude accuracy.

The organization of this paper proceeds as follows. First, the new sensor concept is shown. A

number of antenna configurations are shown. Next, a review of Wahba's problem is shown for attitude
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determination,aswell asa methodto determinethe associatedweights in the lossfunction. Simulation

resultsarethenpresented,with adiscussionof theproceduresfor actualhardwareimplementation.

New GPS Sensor Concept

In this section the concept of the Compound Eye GPS Attitude and Navigation Sensor (CEGANS) is

introduced. A number of sensor configurations are shown for the new sensor. Next, an attitude

determination algorithm is developed, which is accomplished by expanding upon current efficient

methods. Finally, simulation results are presented.

The Compound Eye GPS Attitude Sensor

The basic concept underlying the CEGANS is a relatively simple one that uses GPS antennas in way

similar to methods employed by star trackers for many years. When considering GPS for navigation

uses only, it is advantageous for a single antenna to cover as much of the visible sky as possible,

allowing signals from as many GPS SVs to be processed as are available to the user. In this way, the

best possible navigation solution can be ascertained with the minimum amount of spacecraft hardware.

The natural result of this approach has been the development of patch antennas capable of tracking GPS

SVs over a hemispherical FOV.

An ideal solution is to provide an attitude capability without losing the navigation function, while

simultaneously avoiding the constraints and requirements imposed by the interferometric method

discussed above. This is an approachable goal once a new and different method of employing GPS

patch antennas is considered. While most antenna designs tend to maximize the available FOV to a

given antenna for navigation and attitude determination purposes, a different approach is introduced in

this paper which uses a reduced FOV.

Using multiple antennas distributed over the surface of a hemisphere, and restricting the FOV of

each antenna to a predetermined cone can provide a workable solution. In this way, each antenna

functions as a star tracker, whose "stars" are the GPS SVs themselves. Two such arrays of restricted

FOV antennas still allow full sky coverage of the GPS constellation thereby permitting navigation

solutions to be determined at any attitude. Since the nominal GPS navigation solution fixes the positions

of the GPS SVs as well as the user vehicle in time and space, the sightlines from the user to the GPS

constellation may also be determined. If each antenna can be "polled" to determine which GPS SVs are

visible in each restricted FOV at a given time, information about where the known sightlines are relative

to the antenna array is also possible. Finally, fixing the antenna geometry relative to the vehicle body



frameallows vehicleattitude information to bedeterminedfrom the orientationof multiple sightlines in

therestrictedFOVsof the antennaarray.

Sensor Configurations

For the initial feasibility study, a six-element sensor array is employed. The computer model has

each of the six antenna elements mounted to one face of a hemi-dodecahedron (see Figure 1). This

configuration has the advantage of allowing one reference element to be oriented parallel to the sensor

mounting plane, while maintaining a uniform separation between all adjacent antennas. For the initial

study, the half-cone angle is 37.48 degrees, effectively dividing half of the sky into six overlapping

FOVs, entirely covering half the sky while avoiding regions simultaneously observable by three

elements. Again, for the sake of simplicity in this initial study, the sensor is assumed to be mounted to a

LEO spacecraft which is directly over the north pole of the Earth, and oriented with a zero degree offset

in both azimuth and elevation with respect to the inertial frame (zero degree attitude error). The sensor

has been presented with a representative scattering of GPS SVs in inertial space. A planar projection of

the sensor FOV is shown in Figure 2, where the element centers are labeled as SO through $5 and the

GPS SVs are labeled as NO 1 through N31. In this projection, the heavy line represents the Earth limb,

below which GPS SVs are eclipsed and may not be employed in subsequent calculations.

Several simple computer models were run, with successful attitude determination. Considerable

improvements can be made by dividing the sky into a greater number of smaller areas. Maintaining the

full sky coverage permitted by the hemi-dodecahedron design requires the inclusion of additional

antenna elements. Spherical symmetry makes the buckeyball a very attractive geometry. A buckeyball

is a solid which may be viewed as a combination of two regular solids, the dodecahedron and the

icosohedron; upon the realization that a dodecahedron has 12 faces and 20 vertices, while the

icosohedron has 20 faces and 12 vertices. A three dimensional fusion of the two solids renders a solid

with 32 faces, 12 identical pentagons (half-cone angle of 20.07 degrees) regularly arranged as on a

dodecahedron and 20 identical hexagons (half-cone angle of 23.8 degrees) arranged as are the triangles

of an icosohedron. For the next series of feasibility studies, a 16-faced hemi-buckeyball sensor has been

employed (see Figure 3), again with all the half-cone angles set to avoid regions simultaneously

observable by three elements. The vehicle model was again assumed to be a LEO spacecraft at the north

pole with the sensor aligned with the inertial reference flame (zero degree attitude error), as shown in

Figure 4.



Another way to divide the sky into a greaternumberof smaller areas without adding more sensor

elements is to enlarge reduced field-of-views (RFOVs) in the basic design to create areas of overlap,

using the information provided by the resulting overlapping coverage (see Figure 5, which has a 27%

increase in the half-cone angles). The overlap regiops and remaining regions now yield effective FOVs
f

for the sky coverage (the RFOV and EFOC_e the same when no overlap occurs). Two hemi-0 FOV)

buckeyballs oriented in opposite directions considered as a single sensor can provide full 4Tr steradian

coverage of the sky. This orientation involves two hemi-buckeyballs mounted to the user spacecraft

(e.g., one to the zenith deck and the other to the nadir deck). Not only does this configuration provide

the caF-5ility of two individual buckeyballs, but allows for the additional division of the full sky into

areas where the two halves overlap. Regions covered by only one element correspond to the faces of the

buckeyball (32), regions covered by two correspond to the edges (90) and, not surprisingly, regions

covered by three elements correspond to the vertices of the buckeyball (60). For the full buckeyball, this

divides the full sky up into 182 uniquely defined areas. A planar projection of this configuration is

shown in Figure 6. The configurations considered in this study are summarized in Table 1 (EFOV-1

corresponds to regions covered by one element, and likewise for EFOV-2 and EFOV-3).

Table I Geometry and Configurations

CEGANS Geometry Cov. EFOV-1 EFOV-2 EFOV-3 Total Areas

A 1 Full-Buckeyball 4r_ 32 90 60 182

A2 Full-Buckeyball 4re 32 90 0 122

B 1 Hemi-Buckeyball 2re 16 33 20 6_.,

B2 Hemi-Buckeyball 2_x 16 33 0 49

C 1 Full-Dodecahedron 4r_ 12 30 20 62

C2 Full-Dodecahedron 4n 12 30 0 42

D 1 Hemi-Dodecahedron 2_ 6 10 5 21

D2 Hemi-Dodecahedron 2n 6 I 0 0 16

Case Studies

To allow easy understanding of the environment during the sensor development phase, the first set of

refinement studies have been executed assuming the CEGANS to be affixed to a static user spacecraft

with a zero degree attitude error under a static GPS constellation. This allowed for realistic yet

comprehensible results to be obtained, while providing a consistent comparative basis of results.

Development of increasingly complex CEGANS types followed. Once the desired level of sensor



complexityhasbeensuccessfullymodeled,refinementsin the environmental model could be addressed.

Up to this point, all attitude solutions are obtained assuming the CEGANS to be affixed to a static LEO

(700 km altitude) user spacecraft with a zero degree attitude error under a static GPS constellation.

Moving to the next level of complexity involves setting the user spacecraft in motion about the Earth.

For this step, the user spacecraft is assumed to be an Earth pointing vehicle, with no attitude errors,

maintaining the CEGANS in a zenith pointing orientation as the spacecraft moved under a static

constellation. A polar orbit is used to provide the widest variety of geometries with respect to the GPS

constellation.

In c:,ch case, sightlines from the user spacecraft to each SV in the GPS constellation are determined,

with those behind the Earth (from the user spacecraft's perspective) eliminated from subsequent

consideration. The GPS SV sightlines are then compared to the boresight vectors (and cone angles) of

each sensor element to establish which GPS SVs fall within the RFOV of each sensor element. In this

way, a truth model can be developed while collecting the sightline data to be made available for attitude

determination. This sightline data takes the form of a binary "visibility" matrix (I: SV visible, 0: SV not

visible) with GPS SVs along one axis and CEGANS element along the other. Since the nominal GPS

navigation function permits inertial position determination of all the GPS SVs as well as the user

spacecraft, vector differences allow determination of the vector sightlines from the user spacecraft body

to the GPS SVs in the inertial frame. Comparing the GPS SV sightlines to the known geometry of the

various CEGANS elements in the user spacecraft body frame through the visibility matrix allows

determination of a unique attitude which permits the correct GPS SVs to be "seen" by the correct

CEGANS elements at a particular time.

Attitude Determination

Once the body boresight vectors and spacecraft sightline vectors are given, then the attitude can be

determined. This is accomplished by minimizing the following loss function (first posed by Wahba

[15])

n

1

](a)=iZw i bi-asi[ 2 (i)
i=1



where _bi now denotes ith unit vector to the center of the EFOV, s i denotes the normalized ith sightline

vector, and wi is a weighting factor. The optimal choice of weights will be discussed below. The error

introduced using the new sensor configuration is mostly due to the incorrect knowledge of the actual

line-of-sight to the GPS spacecraft in the body frame, since all visible GPS spacecraft in an antenna FOV

are assumed to have a body vector in the center of the EFOV. It is possible to have overlapping circles so

that that all EFOVs have approximately the same area. If the areas are equal for each corresponding

boresight, then Equation (1) can be simplified by setting w i = 1. Once the weights have been chosen,

then the solution for the attitude can be found using standard techniques that minimize Wahba's

problem.

A simple solution for the attitude matrix in Equation (1) is given by performing a singular-value-

decomposition of the following matrix [17]

F= Z wibis-T = u y. v T

i=1

The optimal solution for the attitude matrix is given by [ 17]

(2)

Aop t =U+V+ T (3)

where

U+ = U[diag(1, l, det U)]

V+ = V[diag(1, l, det V)]

The covariance of the estimation error angle vector in the body frame is given by

(4a)

(4b)

(5)(,E{St_T}--P = o.2i+o.si -

ki=l

where 8__a corresponds to a small error angle, and Crbi and O'si are the standard deviations of the body

and sightline measurement error processes, respectively. Since the GPS spacecraft positions are well

known, it is reasonable to assume that o.bi >> o.si (for the remainder of the paper o'i2 -- o.2i).
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Since the z-axis of the sensor coordinate system is outward along the boresight, then the@/
/

reconstructed unit vector in the body frame is given as a function of the co-elevation 0 i and azimuth _i_

,_ by

Isin 0 i cos _i"

b i = [sin 0 i sin ¢i (6)

L cosOi

The true (error-free) unit vector is given by

(7)

If the error distribution is axially symmetric about b_ e (which is a reasonable assumption for the GPS

sensor), then the variance of the body measurement process for a uniform distribution over a circle of

radius Pi can be determined by

0-/2 = 1E{sin2 O} = lI_

which leads to

(1 -- COS2 0) d(cos 0)

1 - cos Pi

0 .2 = 6(2 +c°spi)(1-c°spi)

(8)

(9)

Note that ifpi is small, then the standard deviation can be accurately approximated by 0-i = Pi/2.

Determining the optimal weights in Equation (1) is not straightforward. An intuitive approach uses

w i = 1/o -2 . Ignoring overlap regions, the error for each antenna encompasses a small circle on a curved

surface of the unit sphere. The area of a small circle of angular radius p is given by [ 16]

FI = 2 rr(l - cos p) (10)

Now consider the case where the FOV of two antennas overlap. The overlap area between two small

circles of angular radii p and 9-, separated by a center-to-center distance fl is given by [16]
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f2 = 2z-2cospacos
-cosg- cospcos#"

sin psin fl

- 2 acosl .c°sfl- c°s qc__os#-
L sin gsin p

,. Fcosp-cosccosfl]
J

<
(I1)

The overlap region can also be used to define another boresight vector. Suppose that two areas overlap,

and each area has each center boresight vector given by b I and b 2. Then, the boresight vector of the

overlap region is simply given by

+
b 3 = ibI +b21 (12)

This allows another measurement set to be made available simply by overlapping the FOV of two

antennas. Also, the non-overlapping part of antenna FOV area decreases simply by l-I-f2. Choosing

weights for the overlapping case becomes extremely difficult, since the error distribution is no longer

uniform in general. Since this paper focuses on the application of the sensor and not on a purely

theoretical analysis, a number of simplifications have been made. First, for the non-overlapping case,

Equation (9) can be approximated by a solid angle given as the projected surface area divided by the

total surface area of the sphere, so that

_L=cr2 : 2zr(l-cosp) =_(l-cosp) (13)
w i 4 ;,r

This is a good approximation even for large values of p (see Figure 7). Next, it is assumed that the

same approximation holds true for the overlapping case; so that the weight for the overlapping region is

given by Wi = 4_/_'2i, and the weight for the non-overlapping region is given by w i =

Therefore, as the area of the small circle decreases, more weight is placed on that measurement in the

attitude determination, which intuitively makes sense. The case for triple overlaps becomes increasingly

complex; however, for this study this case yields areas that are approximately equal so that Equation (13)

is a good approximation for the EFOVs.

The performance of the attitude determination algorithm may be enhanced. This is accomplished by

assuring that vectors formed by mapping the sightline vectors into the body frame (using the determined

attitude) are within the corresponding antenna FOV centered at the assumed body-frame boresight

vector. The procedure is as follows:
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1) Determine any overlap regions and corresponding boresight vectors.

2) Determine the optimal weights using area formulas.

3) Determine the available GPS spacecraft in each area and form sightline vectors.

4) Determine the attitude (A) by minimizing Equation (1).

5) Map the sightline vectors into the body frame, i.e., b_"i = A s i.

Determine the angle between the mapped vector and actual boresight ,9 i = acos(_i .bi).6)

7) Determine if each mapped vector b__"i is outside of its corresponding FOV.

If a mapped vector is not within its corresponding FOV, then the weight associated with the

corresponding boresight vector and sightline vector should be decreased by some factor (e.g., 1/2). The

procedure is continued until all mapped vectors are within their corresponding FOVs. This ensures that

the physical nature of the determined attitude is correct.

Simulation Results

In this section, simulation results are presented for a number of sensor configurations. The first test

case involves a simulated non-moving spacecraft at the zenith position using the hemi-dodecahedron

sensor (D2 in Table 1), as seen in Figure 2. There are nine available GPS sightlines with one

overlapping SV in the $2 and $3 FOVs. With the weighting scheme developed in the previous section,

it was determined that the found attitude provided mapped sightline vectors within their respected FOVs.

Therefore, the attitude is a consistent with the sensor configuration. Attitude accuracy and 3o bounds

using Equation (5) are shown in Table 2. Clearly the simple sensor approach provides a feasible method

for attitude determination. The 3or bounds are large due to the assumption of a uniform error

distribution, which results in an absolute worst case scenario (i.e., when all actual body measurements

are at the sensor edge of view).

Table 2 Results for Case 1 (see Figure 2)

Roll

1.47

Attitude Errors (deg)

Pitch Yaw Roll

-3.42 -6.48 22.8

3o bounds (deg)

Pitch Yaw

24.7 20.8
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The second test case involves the same spacecraft at the zenith position using the hemi-buckeYball_(B/l / _'

in Table l),'as seen in Figure 4. For this case, there are a total number 11 available GPS sightlines, with

three overlapping spacecraft. In order to quantify the concept of using overlapping FOVs. two different .__

solutions were determined. The first assumes that no overlapping occurs[K"Results, for the attitude

accuracy and 3o bounds are shown in Table 3. Clearly, decreasing the sensor FOV increases attitude

accuracy (as expected). The next solution uses the overlapping regions,_ith an effective boresight

centered in each overlapping region. Results for the attitude accuracy and 3c bounds are also shown in

Table 3. Clearly attitude knowledge improves for yaw, but more importantly the 3or bounds are

dramatically reduced. This shows that significant improvements are possible by considering the

overlapping regions, with areas much less than the non-overlapping regions.

Table 3 Results for Case 2 (see Figure 4)

Attitude Errors (deg) ' 30 bounds (deg)

Roll Pitch Yaw Roll Pitch Yaw

5mn-.ove_p -1.69 2.98 -1.40 12.9 13.1 11.8

overt_ -1.60 2.32 0.81 4.91 6.3 4.8

A dynamic test run has also been performed for a simulated Earth pointing spacecraft at one

revolution per orbit (RPO). The sensor configuration is given by the full-buckeyball (AI in Table 1).

with increased half-cone angles, as seen in Figure 6. Increasing the half-cone angles results in

approximately equal areas for the overlapping regions. The sensor measurements are sampled at 0.1

degree increments. A plot of the number of available GPS sightlines is shown in Figure 8. In general,

the more available SV's the more accurate the attitude (the separation angle affects attitude accuracy as

well). A plot of the attitude error/with 3or bounds is shown in Figure 9. Clearly, the theoretical
/

weighting choice in Equation,(2_ provides accurate attitude error bounds. Also, the attitude errors are

greatest when there are the fewest available number of SV's. For this sensor configuration case attitude

accuracy within 5 degrees is possible. In order to further improve the accuracy a simple attitude filter

has been implemented. This is a simple first-order Kalman filter that combines a propagated model with

the determined attitudes. Since gyros are not used for this case, the angular velocity is assumed to be

perfect (i.e., given by the one revolution-per-orbit motion). This assumption is not exact, since external

disturbances and control errors are present in the actual system. These general involve dynamic coupling

in the roll/yaw axis for Earth pointing spacecraft, which are modeled by adding a bias to the pitch rate
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andsinewaveto the roll andyaw axeswith a90 degreephasedifference(seeRef. [ 18] for details). The

simple filter is given by

glk +l (-) = exP( 2f2( co) At} gtk ( + ) (14a)

_0k(+) = (1 - a)_k(-) + a q_-k (14b)

where At is the sampling interval in seconds, q---kis the determined attitude at time tk, glk is the estimated

attitude at time tk, and a is a scalar gain. This gain can be determined by minimizing the attitude errors

from the simulated runs. A value that is too small adds too much model correction, and tends to neglect

measurements. A value that is too large adds too much measurement noise, and tends to neglect model

corrections. A value of a = 0.1 was determined to be optimal. Also, the steady-state attitude error-

covariance is given by [ 18]

b P (15)
2-a

A plot of the attitude errors and 30" bounds using the simple filter is shown in Figure 10. Clearly, the

attitude accuracy can be improved by nearly a factor of four. This simulation case clearly indicates that

attitude determination using the simple sensor scheme is viable.

Conclusions

The concept behind the CEGANS sensor was presented and the theory of operation developed.

Theoretical results were obtained and presented which are sufficient to demonstrate the feasibility of the

CEGANS concept as viable means of providing an autonomous on-board attitude determination

capability using GPS. The traditional interferometric method requires long baselines (on the order of a

meter or more) to be effective, thereby limiting the size of the vehicle upon which it can be employed.

Furthermore, the interferometric method can be difficult to initialize, and requires very accurate

measurements of GPS SV carrier phase which can be exceedingly sensitive to multipath interference.

These problems tend to impose geometric design and cumbersome testing requirements on the vehicle to

provide clear, unobstructed, multipath-free sightlines to antennas distributed all over the vehicle, which

depending on the vehicle may or may not be easily accommodated. Accuracies obtained herein prove

that the CEGANS concept can meet the attitude requirements of a wide variety of vehicles. As

technology evolves, GPS receivers and antennas become more and more capable, allowing for further
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refinement of this method by either better processingschemesor still greater number of antenna

elements. This is in stark contrastto the potential for growth inherentin differential or carrier-phased

basemethodsof comparablecapability which are asymptoticallyapproachingthe limits imposed by

physics.
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Fig. I Spherically Symmetric (Hemi-Dodecahedron) Array of FOV Restricted Patch Antennas

Fig. 2 2-D Projection of the Hemi-Dodecahedron Sensor FOV

Fig. 3 A Hemi-Buckeyball

Fig. 4 2-D Projection of the Hemi-Buckeyball Sensor FOV

Fig. 5 2-D Projection of the Hemi-Buckeyball Sensor FOV with Increased Half-Cone Angles

Fig. 6 2-D Projection of the Full-Buckeybail Sensor FOV with Increased Half-Cone Angles

Fig. 7 Actual and Approximate Inverse Weighting

Fig. 8 Number of Available GPS Spacecraft

Fig. 9 Attitude Errors and 3_ bounds

Fig. 10 Attitude Errors and 3or bounds using a Simple Filter
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